SELECTED PHYSICAL DATA

Astronomical Data

Planetary body	Mean distance from sun (m)	Period (years)	Mass (kg)	Mean radius (m)
Sun		_	1.99×10^{30}	6.96×10^{8}
Moon	3.84×10^{8} *	27.3 days	7.36×10^{22}	1.74×10^{6}
Mercury	5.79×10^{10}	0.241	3.18×10^{23}	2.43×10^{6}
Venus	1.08×10^{11}	0.615	4.88×10^{24}	6.06×10^{6}
Earth	1.50×10^{11}	1.00	5.98×10^{24}	6.37×10^{6}
Mars	2.28×10^{11}	1.88	6.42×10^{23}	3.37×10^{6}
Jupiter	7.78×10^{11}	11.9	1.90×10^{27}	6.99×10^{7}
Saturn	1.43×10^{12}	29.5	5.68×10^{26}	5.85×10^{7}
Uranus	2.87×10^{12}	84.0	8.68×10^{25}	2.33×10^{7}
Neptune	4.50×10^{12}	165	1.03×10^{26}	2.21×10^{7}

Hydrogen Atom Energies and Radii

n	$E_n(eV)$	r_n (nm)
1	-13.60	0.053
2	-3.40	0.212
3	-1.51	0.476
4	-0.85	0.848
5	-0.54	1.322

*Distance from earth

Typical Coefficients of Friction

	Static	Kinetic	Rolling	
Material	$\mu_{\rm s}$	$\mu_{\mathbf{k}}$	$\mu_{\rm r}$	
Rubber on concrete	1.00	0.80	0.02	
Steel on steel (dry)	0.80	0.60	0.002	
Steel on steel (lubricated)	0.10	0.05		
Wood on wood	0.50	0.20		
Wood on snow	0.12	0.06	-	
Ice on ice	0.10	0.03		

Melting/Boiling Temperatures and Heats of Transformation

Substance	T _m (°C)	$L_{\rm f}({ m J/kg})$	$T_{\rm b}(^{\circ}{\rm C})$	$L_{\rm v}({\rm J/kg})$
Water	0	3.33×10^{5}	100	22.6×10^{5}
Nitrogen (N ₂)	-210	0.26×10^{5}	-196	1.99×10^{5}
Ethyl alcohol	-114	1.09×10^{5}	78	8.79×10^{5}
Mercury	-39	0.11×10^{5}	357	2.96×10^{5}
Lead	328	0.25×10^{5}	1750	8.58×10^{5}

Properties of Materials

Substance	ρ (kg/m ³)	c (J/kg K)
Air at STP*	1.28	
Ethyl alcohol	790	2400
Gasoline	680	
Glycerin	1260	
Mercury	13,600	140
Oil (typical)	900	
Seawater	1030	
Water	1000	4190
Aluminum	2700	900
Copper	8920	385
Gold	19,300	129
Ice	920	2090
Iron	7870	449
Lead	11,300	128
Silicon	2330	703

*Standard temperature (0°C) and pressure (1 atm)

Resistivity and Conductivity of Conductors

Metals	Resistivity (Ω m)	Conductivity $(\Omega^{-1} m^{-1})$
Aluminum	2.8×10^{-8}	3.5×10^{7}
Copper	1.7×10^{-8}	6.0×10^{7}
Gold	2.4×10^{-8}	4.1×10^{7}
Iron	9.7×10^{-8}	1.0×10^{7}
Silver	1.6×10^{-8}	6.2×10^{7}
Tungsten	5.6×10^{-8}	1.8×10^{7}
Nichrome	1.5×10^{-6}	6.7×10^{5}
Carbon	3.5×10^{-5}	2.9×10^{4}

Atom	Z	Mass (u)	Mass (MeV/c2)
Electron	7	0.00055	0.51
Proton	_	1.00728	938.28
Neutron	_	1.00866	939.57
1H	1	1.00783	938.79
² H	1	2.01410	
⁴ He	2	4.00260	
¹² C	6	12.00000	
14C	6	14.00324	
14N	7	14.00307	
¹⁶ O	8	15.99492	
²⁰ Ne	10	19.99244	
²⁷ A1	13	26.98154	(4)
⁴⁰ Ar	18	39.96238	
²⁰⁷ Pb	82	206.97444	
²³⁸ U	92	238.05078	

Molar Specific Heats of Gases

Gas	$C_{\rm P}({ m J/mol}\ { m K})$	$C_{\rm V}({ m J/mol}~{ m K})$
Monato	mic Gases	
He	20.8	12.5
Ne	20.8	12.5
Ar	20.8	12.5
Diatomi	ic Gases	
H2 -	28.7	20.4
N_2	29.1	20.8
O_2	29.2	20.9

Indices of Refraction

Material	Index of refraction
Vacuum	1 exactly
Air	1.0003
Water	1.33
Glass	1.50
Diamond	2.42

Work Functions of Metals

Metal	E_0 (eV	
Potassium	2.30	
Sodium	2.75	
Aluminum	4.28	
Tungsten	4.55	
Iron	4.65	
Copper	4.70	
Gold	5.10	